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e increased use of automation in aircraft, ships,

process plants, transportation networks, and other

oarge-scale systems is changing the human's role in such

systems. The manual activities of the human operator are

increasingly supplanted by monitoring of automation and

occasional problem solving activities. This thesis focuses

on these problem solving activities.

Models of human problem solving are reviewed, with

emphasis on those applicable to situations involving

human-machine interaction in detecting, diagnosing, and

compensation for system failures. From this review it

emerges that most models developed thus far focus on a

single aspect of problem solving. An overall model is

presented, which considers the full breadth and robustness

of human problem solving behavior in dynamic environments.

A realization of the general structure of this model within

a particular rule-based computer program is discussed.

Results are presented from applying this program to modeling

human problem solving in a process control task. _________

William B. Rouse, Advisor
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CHAPTER I

INTRODUCTION

Due to increasing automation in aircraft, ships,

process plants, transportation networks, and other

large-scale systems, the human's manual activities are more

and more supplanted by monitoring of automation and

occasional problem solving activities. This thesis focuses

on these problem solving activities.

Problem solving can be characterized as & mixture of

planning and control (Hayes-Roth and Hayes-Roth, 1979).

Planning involves searching for a sequence of actions that

will potentially lead to problem solution. Control includes

execution and monitoring of this sequence of actions.

Over the last fifteen years a wide range of models of

human problem solving behavior has been developed. Some of

these models are reviewed in Chapter II. Most of these

models focus on a single aspect of problem solving. Thus,

there is a need for a general model of human problem

solving, especially for dealing with dynamic systems. It is

the purpose of this thesis to present such a model.

Pt , . , ,' , .. .• .. . ..* . ? ... .<... . ... ..



2

In the second section of Chapter II the nature of

human expertise and some ideas of how it should be

represented are considered. This leads to a discussion of

rule-based modeling thich seems especially well suited to

modeling the human problem solver in dynamic environments.

Chapter III describes the general tasks of an

operator when controlling a dynamic process as well as

levels of problem solving behavior in such tasks. This

leads to an outline of an overall model of human problem

solving in dynamic environments, which has been proposed by

Rouse (1982).

Chapter IV discusses a realization of this general

structure within a particular rule-based computer program.

This model builds on previously developed models and is

general in that it is applicable in different problem

solving environments by exchanging its problem-specific

knowledge base.

Chapter V represents the application of this model in

a process control simulation. Bxtensive data from an

experiment performed by Morris (1983) were used to develop

the rules for the model and to evaluate the resulting model

behavior aid perforaancea Finally# in Chapter VI,

conc3 sior are drawn and suggestions for future research

are given.

11
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CHAPTER II

THE LITERATURE

The literature relevant for this work comes from two

main areas of research: 1) modeling of human problem

solving and 2) representing human knowledge. The first

section of this chapter reviews several models of human

problem solving which are applicable to human-machine

interaction in the control of various processes. Particular

consideration is given to those models which deal with

detection, diagnosis and compensation for system failures

and which take into account dynamic aspects of problem

solving tasks. The second section of this chapter discusses

representation of human knowledge and characteristics of

rule-based models, which form the framework of the general

model of human problem solving proposed in this thesis.

M nf -um- Prolm Salving

During the past ten to fifteen years a wide range of

models of human problem solving behavior has been developed.

Some models focus on the pattern recognition nature of human

behavior in problem solving tasks. For example, familiar

scripts (Schank and Abelson, 1977) or frames (Minsky, 1975)

S - ,. - - -- *-" . . - . .. ' - .' .- *.- . . - .- .- ..- . . - .? .- -% %....~~~ ~~ r. %. -. o- '. .'."..". .".".-. .'.'.. .0%.' "- '.'.-.-' %- .. . . ".""""""""""' " 4
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may evoke a sense of having seen a particular type of

problem before. Other models use a strategic approach, e.g.

symptomatic versus topographic strategies (Rasmussen, 1978).

Failure detection is typically modeled by assuming

that the operator compares the actual system state with a

mental model of what the process should be. Several authors

have modeled human behavior in failure detection tasks.

e.g., by means of siqnal detection theory (Sheridan and

Ferrell, 1974), thresholds for error and error-rate (Niemela

and Krendel, 1975) or pattern recognition methods

(Greenstein and Rouse, 1982, Curry, 1981). Models based on

pattern recognition assume the human's detection task to be

recognizing when the pattern of features is abnormal. This

type of model seems quite appropriate for real life tasks

since it does not require as much explicit information as

the other models.

Human performance in failure diagnosis has also been

considered by several researchers. Rouse, et al. (1980)

I developed a rule-based model that predicted the sequence of

actions chosen by the troubleshooter in a failure diagnosis

task. By appropriate choices of rules and rank ordering,

they were able to obtain a high level of agreement between

the behavior of the model and that of the humans.

- tey wre ale t obtin hig levl ofagremen bewe

S !'
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Rasmussen (1981) suggested a dichotomy of problem

solving in terms of search strategies. Using topographic

search, the human operator, while tracing the process

through the system, may compare what is observed to a

template for "normal" operation and note discrepancies

- between the two. With the symptomatic search, the operator

may compare current system state to a number of mentally

stored templates and look for a match.

Hunt and Rouse (1982) incorporated Rasmussen's

concepts of symptomatic and topographic strategies into a

fuzzy rule-based model of fault diagnosis. In their

formulation, the type of heuristic used at a particular time

was viewed as being related to the type of strategy being

implemented, with rules used in a symptomatic strategy being

more context specific.. This model was reasonably successful

in predicting the sequence of actions chosen by mechanics in

troubleshooting simulated powerplants and avionics systems.

If a failure must be diagnosed during system

operation, as opposed to during maintenance, then the human

problem solver typically must be concerned with both keeping

the system operating and diagnosing the source of the

problem. Compensation and diagnosis can be viewed as two

separate tasks competing for the operator's attention (Rouse

and Morris, 1981a, 1981b). Unfortunately, this situation

can result in the operator focusing on one task to the

U . .~.. - •, •. - ' ,. '. ". .. .,,
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exclusion of the other. This may have disastrous

consequences. Compensation and diagnosis are interdependent

tasks, i.e., possibly conflicting or complementary, which

increases the potential complexity of dealing with problem

solving at multiple levels.

For those situations where compensation involves

executing standard procedures or manual control, there are a

variety of models available (Sheridan and Ferrell, 1974,

Rouse, 1980, 1981). However, these are not models of human

problem solving.

Rasmussen (1980) developed a model, where he includes

the stages in the decision making process that are typical

for most analyses of human problem solving behavior. Human

behavior in different situations depends on the operator's

experience and knowledge about the situation and on one's

ability to adapt to unfamiliar situations. The categories

of human behavior and performance can be expressed in three

different levels: skill-, rule-, and knowledge-based

behavior.

Skill-hazad behavior represents sensori-motor

performance during acts or activities which, following a

statement of an intention, evolve without conscious control

as smooth, automated and highly integrated patterns of

behavior. Rule-bsed behavior is typically controlled by a

.- "" -- : ..% "-" " . ", " ." " .- -.--.. - .--.
. * . .. * "- .. _. ..
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stored rule or procedure which may have been derived

empirically during previous occasions or may be developed

when needed by conscious problem solving and planning.

Knowledge-banea behavior is the typical level of behavior in

less familiar situations, when no rules for control are

available from previous encounters, when problem solving and

planning is necessary, when different goals must be

considered, and decisions or choices among alternative plans

should be taken.

Other than the aforementioned models by Rasmussen,

Rouse, and Hunt, there are no directly applicable models of

problem solving behavior in coordinating compensation and

diagnosis, or for compensation itself. Before presenting

such a model, however, the next section considers the role

of human expertise and approaches to representing human

knowledge. This discussion develops the framework for the

computer program which is proposed as a realization of an

overall model of human problem solving in dynamic

environments.

This section reviews a variety of approaches to

representing human knowledge in a form suitable for

incorporation in a problem solving computer program. Many

of the concepts reviewed in this section are embedded in the

: , - \. ., .V :: V S. .. T . - ',.. " '':,



model proposed in Chapters III and IV.

A fundamental question regarding knowledge

representation concerns the tradeoffs between storage and

computation. Several models which are similar in essence,

have been developed to show how people may trade off between

storage and computation (Minsky, 1975, Schank and Abelson,

1977). Minsky's model of frames was one of the first such

models.

A frame is a complex data-structure for representing

stereotypical situations such as viewing a certain kind of

living room or going to a child's birthday party. The frame
5

has slots for the objects that play a role in the

stereotypical situation, as well as relations between these

objects. Attached to each frame are different kinds of

infornation such as how to use the frame, what to do if

something happens, default values for slots, etc. As long

as nothing too extraordinary appeors, the recognition of a

frame automatically triggers the appropriate action. A

surprise may result when the frame does not include an

expected ._ re or does include an unexpected feature.

A 1iw a base is a collection of frames organized

in terms of some organizational principles but also looser

principles such as the notion of similiarity between two

frames. The original frame proposal was basically a

J. . s *: .• . . .; ,.., .. . .. , . -
a ,... U..r ...... ................ ,. "............................. .. " .. " .. ... '. .. ..-.... 5-'. .. .". .. . .". . .".. .
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* framework for developing representation schemes which

combined ideas from semantic networks. procedural schemes.

linguistics etc. Representation schemes which have adapted

the frame proposal are, for example. FRL (Goldstein and

Roberts. 1977), KRL (Bobrow and Winograd, 1977), and KLONE

(Brachman. 1979).

Scripts, Plans, and Goals as described by Schank and

Abelson (1977) are very similar to frames except that they

pertain to processes rather than situations. Goals trigger

the use of familiar plans which in turn cause the execution

of well-practiced scripts.

The most commonly implemented model of knowledge

representation is the production system (Newell and Simon,

1972, Shortliffe. 1976, Duda. et al., 1979, Young, 1979).

Productions are rules of the form IF <situation> THEN

<action>. A network of many interconnected productions is

often referred to as an inference network.

Parley (1980) discusses general problematic issues

inherent in knowledge-based problem solving. These issues

deal with the representation of the environment and general

solution plans, the coordination of multiple plan execution

and problem solving within an environment over an extended

period of time or under time constraints. For example, the

environment is represented by the current state, i.e., the

IN , r - . .... % - ..- --. -ql z 4%
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current environmental situation, and the goal state, i.e.#

the situation state which the problem solving system desires

the current environmental situation to attain. A problem

exists for a problem solving system when the current

environmental situation is not a goal state. Problem

solving refers to any activity undertaken in the attempt to

reduce differences between current and goal state. A

general solution plan is the description of a process which

is capable of satisfying any of a set of goal states from

any of a set of possible current, or initial, states.

In the production system representation of a general

solution plan, each plan state serves as the condition part

of a rule, whose action part is the operator labeling the

link leaving that plan state. A production system is

executed by repeatedly selecting a rule whose condition part

is satisfied by the current state and executing that rule's

action part.

SCHOLAR (Carbonell, 1970) and MYCIN (Shortliffe,

1976) are knowledge-based systems in wlaich a database of

information is presented in an associative structure

analogous to (but not necessarily exactly like) human

structures. While these programs are not models of human

performance, they may be thought of as formal qualitative

models of the environment in which human performance takes

place.

~ j* . *. 1 .7 PL A*** -. ,k
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Wesson's (1977) production system description of air

traffic control planning is one type of knowledge-based

model of human performance. Wesson has built a

knowledge-based system that can plan traffic flow,

anticipate critical incidents, and issue orders to pilots.

In a series of scenarios, the model usually performed better

than real controllers.

There seems to be a consensus that expertise is not

based solely on the accumulation of facts but also on the

development of a problem solving approach. The approach of

a problem solver will be heavily dependent upon the internal

representation used, and to a lesser extent, dependent upon

how the information was originally acquired.

Theories of human problem solving expertise are often

not well substantiated by experimental results. The most

interesting problem solving tasks are too robust to be

controlled experimentally and many experimental tasks are

too abstract to provide useful results. For this reason,

useful models tend to have narrow applicability whereas
'p

broadly applicable models are less directly useful.

AOp
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In this section the characteristics of rule-based

models, especially production systems, are described in more

detail, since they form the framework of the model described

in Chapter IV.

Rule-based models, especially production systems,

have become a fairly popular medium for modeling human

problem solving (Waterman and Hayes-Roth, 1978). They excel

in flexibility, modularity and expandability (Davis and

King, 1977). Within the production system formalism it is

possible to express different levels of knowledge as well as

different problem solving strategies.

All production systems consist basically of two

parts: 1) a set of rules in the form IF <situation> Then

<action> or <situation>, and 2) a control structure for

administering the rules. The left-hand side of the rules

describes a situation to which the rule applies, i.e., a

list of things to watch for. The right-hand side describes

an action to be taken, i.e., a list of things to do, or

information to be gained as a result of employing the rule.

A production system is set of productions plus a mechanism

to select which one to apply when more than one could be

applied. At .ons resulting from one production can result

in situations that will cause other productions to execute

% %V



13

(Rouse, 1980).

The rules may be either context-specific i.e., they

refer directly to the state of the specific problem, or they

may be context-free, i.e., they refer more generally to any

problem with a given structure. The control structurer more

than the rules themselves, determines how the model behaves.

Another distinction should be drawn between left-hand

driven or pattern-directed models and right-hand or

goal-driven models. The former selects rules based on the

observed situation and the conditions contained in the

left-hand portion of the rules. This results in a bottom-up

or forward chaining behavior. In the case of

situation/action pairs a scheme for conflict resolution is

necessary to handle a situation in which more than one

action is indicated. This may be accomplished by

prioritizing the rules and choosing the first one that

matches.

On the other hand, there are several methods of

controlling the behavior of the model from the

right-hand-side. This results in a hypothesis testing or

backward chaining behavior.

. . %.. - N
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Rule-based models seem quite appropriate for modeling

the human problem solver in dynamic environments. However,

the attributes of rule-based models described so far do not

indicate how to model the dynamic aspects of process

control. In the next chapter the nature of dynamic

processes and the role of the operator in such environments

will be discussed. This will lead to a presentation of the

general structure of a model of human problem solving.

isi ' ~ V5



15

CHAPTER III

AN OVERALL MODEL

Prola S ing in Dynamic Environments

Most of the well-known rule-based systems such as

MYCIN (Shortliffe, 1976) and DENDRAL (Feigenbaum et al.,

1971) deal with static problems. Engineering systems,

however, are inherently dynamic. For this reason, modeling

of human problem solving in the context of engineering

systems requires consideration of issues associated with

dynamic problems. (For a detailed discussion of the

complexity of controlling dynamic processes, see the recent

review report by Morris (1982).)

There are different approaches to categorizing the

tasks a human operator has to perform when controlling a

dynamic system. One is to view the control process in terms

of coordination of three goals (Rouse and Morris, 1981a).

First the system must be Atkabj±.zt d in the sense of

maintaining the state of the system within some allowable

range. Second, if possible, system performance should be

nin order to maximize production, minimize energy

consumption, maximize safety etc. Finally, if anything

unusual occurs, this event must be datatpAd, the source of

g, € -, ! € ~~............... . ............ . ............... ... ".... . *.---'.-
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the unexpected event must be djagnonad, and appropriate

Xwmpansation pursued. These detection, diagnosis, and

compensation tasks can be referred to as Rroblam solving.

Unfortunately, these three goals cannot be pursued

independently. For example, achieving optimal performance

A may require that one operates the system on the edge of

instability. Further, attention devoted to problem solving

can result in degradation with respect to stabilization and

optimization. Thus, beyond performing the particular tasks

associated with stabilization, optimization, and problem

solving, one must also achieve an appropriate balance among

these three goals.

Thus, the control of an engineering system could be

viewed as requiring a two-step process of decision making.

First, one must determine which goal is most important at

the moment. Then, one must determine the action or actions

most appropriate for achieving this goal. This may be quite

complicated by the dynamic nature of the system.

Another approach is described by Rasmussen and Lind

(1981, 1982). They describe a control system in different

hierarchical levels of abstraction, starting with the lowest

level, the physical form of a system and then moving up to

physical function, generalized function, abstract function

and finally the overall purpose of the system. The tasks of

dip.., .. .. .. .
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the control system will be, by proper action on the system,

to ensure that the actual state of the system matches the

.:!, target state specified by the intended mode of operation.

During normal operating conditions, for instance, a set of

generic control tasks can be defined: Coordination of

functional states in separate units; reconfiguration by

ZN switching and valving in order to integrate into higher

level functions; aj utznn = me e the larj". state of

functions at the next level.

During emergency and major disturbances, an important

control decision is to prioritize by selecting the level of

abstraction at which the task should be considered. First,

judge overall consequences of the disturbance for the plant

production and safety in order to see whether the plant mode

of operation should be switched to a safer state. Next,

consider whether the situation can be counteracted by

reconfiguration to use alternative functions and resources.

Finally, the root cause of the disturbance is sought to

determine how it can be corrected.

The control task can be formulated at the various

levels as the activity needed for maintaining or reaching

correspondence between a target state and the actual state

of the function considered. This task involves

identification of the actual state from the measurement of

variables related to the physical state of components.

......................... .............. .. ,,
'a 'P , • - v ,r m ...- . .. ,- ,o , .o. - ... -o , ." ." " ." =~ ."... . . . . . . . .. . . . . . . .-.. . . . .-....-.. .,.-,... . . . .".. .-.. .".•
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Target states are derived top-down from functional

specifications and the reasons behind design decisions, and

their determination may be difficult due to the conflicting

goals and implicitly given company policies.

Discrepancies between target and actual states

determine the task which can be defined at any level. This

implies a prioritizing choice considering system dynamics,

the nature of disturbances, etc. Finally, the proper

-~ sequence of actions is planned from knowledge of the

resources available in terms of functions and equipment.

iZ Based on the above lines of reasoning, the model

proposed in this thesis assumes that there are four general

tasks for the operator in a dynamic environment, two or more

of which may have to be performed simultaneously: 1)

transition tasks, such as start-up, shut-down, take-off, and

Vlanding, 2) steady-state tuning, 3) detection and diagnosis

of failures, and 4) compensation for failures. To perform

these tasks, the operator has to know: 1) how the process

will evolve if left alone, 2) what the effect will be of

implementing control actions, and 3) what task is currently

appropriate.

In the following subsection these four general tasks

are described with emphasis on a modeling view of these

tasks, i.e., how to incorporate these tasks into a

.'p . -
i -. . .. . .. .
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rule-based model.

Transition Tanks

While the operator performs a transition task,

control is often fairly proceduralized although there need

not be a formal written procedure.* A certain sequence of

actions is often known which will lead to the desired

outcome, i.e., the operator knows the goal state. During

start-up, for instance, the operator utilizes actions of a

known procedure which will lead the actual state of the

system to this goal-state. Thus, this is clearly a

goal-driven situation and a model for this task should be

right-hand driven.

Seady-stat Tuning

Steady-state tuning involves actions oriented toward

optimizing performance. This calls for a left-hand driven

or pattern-directed approach, where the appropriate action

depends on a multitude of factors that can only be perceived

as a pattern. Procedures are of great value for this task,

since the merits and consequences of various approaches may

be considered in advance and the one(s) most likely to

* Proceduralized, throughout this thesis, should be
understood as informally proceduralized rather than
following a written procedure. In many situations humans
behave in a proceduralized manner in terms of well-learned
scripts of heuristics, and only occasionally are there
formal written procedures available for a specific task.

.,.. ,-.... .
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achieve a given set of goals may be selected.

In contrast to transition procedures, tuning

•. procedures are pattern-driven since the operator generally

does not work towards a certain goal-state of the system.

Instead, the operator applies tuning procedures to maintain

the system's state. Thus, a specific pattern, the current

situation, triggers an appropriate action.

Faitir Qatection And niagnostin

This task will necessarily be performed in parallel

to transition and tuning tasks. More specifically, failure

4detection is active at all times and does not interrupt

transition or tuning procedures. Failure diagnosis,

however, interrupts the operator while performing a

procedure, to which he has to return once the diagnostic

task and perhaps any necessary compensation task have been

completed. Procedures may not be as valuable for detection

and diagnosis because it is rather difficult to anticipate

all possible malfunctions.

Thus, rules for failure detection must be monitored

during transition tasks, steady-state tuning and

compensation for failures. Once an abnormal condition has

been detected, then diagnosis may begin. It is possible

that the diagnosis task could be either pattern or

goal-driven. If the process is not too complex the

N~
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diagnosis could proceed from the left-hand side. A certain

pattern may trigger an appropriate diagnostic action. In a

more complex process it may be necessary to establish the

integrity of certain critical plant functions in a more

structured right-hand driven manner. In this case, planning

may be required in terms of the actions likely to lead to a

desired goal.

Eaillre Cnmpnnaton

Failure compensation would, in most cases, be fairly

proceduralized. Once the cause of a disturbance has been

diagnosed then, if it is a familiar failure, an appropriate

action can be performed. However, if it is an unfamiliar

failure, alternative approaches to failure compensation may

have to be considered. For example, the human may have to

experiment with alternative approaches to compensation.

The preceeding section describes four general tasks

an operator has to perform while he or she is controlling a

dynamic process. Transition tasks are fairly proceduralized

in that the operator applies a well-known sequence of

actions in order to reach a goal. Thus, they are

goal-driven. They involve going from one acceptable state

to another. Tuning tasks may be proceduralized, but are

pattern-driven. The human takes the system from an

V-•N"N
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unacceptable state of the system to an acceptable state

following a well-known script evoked by a pattern.

Failure detection and diagnosis are performed in

parallel to transition and tuning tasks. There is no

procedure to detect a failure but there may be scripts for

how to diagnose a failure. This task is goal- or

pattern-driven depending on the task complexity. Finally,

failure compensation can also be performed by applying

learned procedures, however, alternative approaches to

compensation are to be considered in unfamiliar situations.

There are some rules that apply to all four tasks and

others that apply to only one task (Hunt, 1982). For

example, rules for a fairly proceduralized transition task,

* such as start-up, may be utilized when operations have been

cut back during failure diagnosis and have to be restored

again. Furthermore, as mentioned above, there are rules for

failure detection whose preconditions have to be monitored

during all four tasks.

Considering coordination among the four tasks, the

* human occasionally will proceed hierarchically from goal to

subgoal to function to task (i.e., in a linear fashion).

More often, however, he or she will skip from task to task

and from goal to goal in an opportunistic manner (Hayes-Roth

and Hayes-Roth, 1979). The latter reflects a more

. . S . - Sj . -- * . .'. -.. . *,. ,.,- - -S -.. * . . ... .. .. . . *..... 5 -, ..
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heterarchical strategy. The proposed model is capable of

reflecting both hierarchical and heterarchical behavior.

AThree-~Level Model aL BNMAn 2RXbl= Snlxing

The first portion of this chapter has outlined the

nature of problem solving in dynamic environments typical of

engineering systems. The emphasis now shifts to describing

how humans deal with problems in these types of environment.

Rouse (1982) has proposed a general and potentially

widely applicable model of human problem solving. This

model assumes that problem solving occurs at several levels

of behavior. It appears that three general levels of

problem solving are needed to model human behavior.

1. k congnilin and Clanification involves detecting that a

problem solving situation exists and assigning it to a

category. At this highest level the human has to identify

the context and category of the problem. The operator first

attempts to map the observed Iakt.La of the problem to an

appropriate frame (Minsky, 1975). Failing to recall an

appropriate frame, the operator has to classify the

situation by its Atirnurar, perhaps through analogy to

problems with similar structures.

2. 1Ianai" is the process whereby the approach to solving N

a problem is determined. At this level the operator has to %

,- - , ,'o. .N m%° 
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decide upon a course of action. If the situation (i.e.,

observed akaW&) is familiar, then an appropriate script

(Schank and Abelson, 1977) or a standard procedure can be

applied. Otherwise, the human must use an approach based on

problem structure in order to develop a new plan, e.g.,

generating alternatives and imagining and valuing

consequences.

3. E.Iut-i and Manitgaing. Actual problem solving occurs

at this lowest level. Familiar aspects of the current stata

may be utilized or, if state patterns are not familiar, the

execution may rely on features of the strgntrA, in a manner

similar to that for the other two levels.

Thus, the model operates on three different levels

and on each level with either a state-oriented or a

structure-oriented approach depending on the knowledge of

the model relative to the patterns displayed. The basic

mechanism of this proposed model is such that humans are

assumed to have a clear preference for proceeding on the

basis of state information rather than using structural

information. This reflects an assumed human preference for

pattern recognition over more analytical thinking. The

basic mechanism of the proposed model is depicted in

Figure 1.

N, .
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PROBLEM"L

CONSIDERSTATE
IORMATO

ISTATE

of ORIENTED

+NO 
RESPONSE

CONSIDERI STRUCTURE|
STRUCTURAL ORIEN TED
INFORMATION RESPONSE

Figure 1. Basic Mechanism of Proposed Model.

In order to realize an operational model of human

problem solving based on this general conceptual framework,

a control mechanism for the coordination of goals and tasks

has to be implemented. Humans often get caught up in the

tasks that they are performing and lose siqht of their

goals. In addition, because of the dynamic nature of the

task, goals may be preempted, temporarily or permanently,

before they are reached. The next chapter describes a

possible control structure that allows representation of

these phenomena.

- ._ .4- M P P -'-. * A
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CHAPTER IV

REALIZATION OF A RULE-BASED MODEL

In the preceding chapter a general model of human

problem solving was discussed. The development of this

model, in the form of a rule-based computer program, has

been the goal of this thesis. While the rules which the

model utilizes naturally depend, to a great extent, on the

specific problem to be solved, one particularly important

goal of this research has been to give the model a generally

applicable structure. With such a structure the model

should be easily adjustable to different dynamic problem

solving environments.

Str~akurpaf KL ART

KARL (Knowledgeable Application of Lule-based Logic)

is a rule-based computer program, a model which consists of

a set of production rules that comprise the knowledge base

and a control structure that accesses the knowledge base.

The model contains approximately 180 production rules

including simple and complex rules. The condition parts of

complex rules contain several logical expressions. Of these

180 rules. approximately 140 pertain specifically to the
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process control task where KARL was evaluated; obviously,

this set would change for application to other tasks.

A simplified flow-chart of KARL is given in Figure 2.

The production rules are embedded in a framework, which

represents the four tasks associated with controlling a

dynamic process, as well as the three levels a human

generally operates on while controlling a dynamic process.

The control structure consists of two modules: 1) a

pre-processing module. where the necessary information about

the system's state is processed in order to identify the

current task the model is performing (CURRENT-TASK), and 2)

a branching mechanism that accesses the portion of the

knowledge base containing the rules the model requires in

order to perform the current task (CONTROL). The model

assumes that whatever task it was last doing it is still

doing, i.e., it does not re-identify the current task each

time. It changes the task when the perceived information

forces it to do so.

Z ..
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4K KAR L

CONTROL PROCESSI

I state information

I pa ssing

[INERFACE

--------------------------------------------------- TO I

CURRENT-TASKI

I control structure

CONTROL

FAILURE TRANSITION TUNING

FAIL-CLASS TRNS-CLASS TUNG-CLASS

FAIL-PLAN TRNS-PLAN TUNG-PLAN

FAIL-EXEC 0TRNS-EXEC TUNG-EXEC

Detection, 6 -Steady-State
Diagnosis & Tuning a
Correction Failure

Compensation

knowledge base

---------------------------------------- ---------------------

Figure 2. Flow-chart of KARL.
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- The knowledge base consists of four subsets, each of

which is associated with one of the four general tasks

although these subsets deviate somewhat from the tasks

discussed earlier. FAILURE contains rules for detection,

diagnosis and correction of failures. TRANSITION contains a

rather proceduralized sequence of rules. TUNING contains

rules for normal operating conditions and failure

compensation. Finally, PROCEDURES contains standard

sequences of rules, each of which is applicable to

particular operating situations.

It is necessary to make clear that there are two

kinds of procedures. Trnsitin produ1res are generalized

sequences of actions which are located in the TRANSITION

part of the model. As mentioned before these procedures are

goal-driven. They differ from Tuning ed~ures in that

they ha= ±& be performed in order to control a system.

Further, they occur, in general, at well known specific

points of time. An example of a transition procedure is

landing an airplane. The goal, landing, can only be reached

by applying a well-learned procedure that prescribes to the

pilot what sequence of actions are necessary in order to

land the plane.

i
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Tuning procedures, however, are sequences of actions,

often well known also, but not always necessary in order to

reach a goal. Flying an airplane the pilot may receive an

announcement that the runway has to be temporarily closed

due to snow removal. Pilots are generally fairly familiar

with such situations and deal with those abnormal situations

in fairly proceduralized manners. They either will enter a

holding pattern or cruise to an alternate airport. This

additional procedure, during navigation of an airplane, may

or may not occur as one proceeds to the goal.

PROCEDURES includes those procedures which are

applied, if the situation requires them, at unforeseen

points of time, but are not necessarily applied in order to

fulfill the overall goal. For the process control discussed

later, these procedures describe situations where the system

state requires a certain action sequence in order to restore

stable system operation.

Each module, except for PROCEDURES, is divided into

the three levels observable in human problem solving

* behavior. After the classification of a situation (CLASS),

different possible actions are evaluated (PLANning), from

* which an appropriate one is then executed (EXEC).

,... af.,.y ., * . :.* .,. ,',.. ;,h* .: ... _ ... . _ ... .. .. ;~ ...- :-. z . .y
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S£Functional Aspgcts nf KARL

Referring to Figure 2 the information flow through

KARL can be explained. The control process passes

information about the system's state to the model and

prompts it for an action command. In INTERFACE this state

information is converted into a form suitable for the rules

embedded in the knowledge base. In CURRENT-TASK the model

determines the current task by means of current state

information and, in particular, by knowledge about the

system gained from previous state information acquired and

subsequent actions. At this point, CONTROL branches to one

of the four modules in the knowledge base.

As mentioned above, the model works both

Nhierarchically and heterarchically. The rules in FAILURE,

TRANSITION and TUNING have been constructed in such a way

that, with the starting point at the top (CLASS), either a

rule in a lower level of operation is invoked (i.e., from

CLASS to PLAN, from CLASS to EXEC or from PLAN to EXEC), or

a rule in another task is invoked (e.g., from TRNS-CLASS to

FAIL-CLASS or from TUNG-EXEC to PROCEDURES).

PROCEDURES is not divided into these three levels,

since it is assumed that for a given situation the commands

to be given are specified until the system is stabilized.

This does not mean, however, that a predetermined command

f, o .t ,,o ' - 4 p . °" , .. .' A-', % ,.' .-. -° %° . -. % %
* ft t-ft- t * f%
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sequence is given. Applying a procedure means that basic

actions are known that will return the system to stable
%

". 'operation. These are determined by invoking rules which

contain knowledge about which command is to be given when.

However, while the model is following a procedure, a failure

may occur so that the procedure may be preempted in order to

perform failure diagnosis and correction. While failure

diagnosis and correction take place, CURRENT-TASK and

CONTROL take care of "remembering" the current operating

task.

In order to solve conflict situations, i.e., when the
condition parts of two rules or more are satisfied, the

following priority structure is embedded in the knowledge

base. The production rules are rank-ordered, i.e., the rule

with the highest priority is tested first. If this rule

matches the situation no other rule is tested. If the

condition part of this rule does not match the situation,

the next rule is tested, and so on. In order to change

priority, the order of the rules has to be changed, or a

different mechanism to select rules has to be implemented.

For example, a fuzzy selection as suggested by Hunt and

Rouse (1982) might be employed.

• "; % ~~~~~~.- ..... ......................
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The essential elements of KARL include the four

general tasks an operator has to perform while he or she is

controlling a dynamic system. Each task is divided into the

-three levels of problem solving behavior: classification,

planning and execution. Throughout this structure the model

works both hierarchically, i.e., going down from

classification to planning to execution within tasks, and

heterarchically, i.e., going across between tasks.

It should be noted that the proposed model is not

intended to be an "Expert Systemw such as MYCIN (Shortliffe,

1976). MYCIN has been designed to diagnose and prescribe

treatment for real medical conditions to the best of its

artificially intelligent ability. Towards this end the

designers have combined human reasoning abilities with the

rapid retrieval and calculating abilities of the computer to

create a problem solver that often out-performs its human

counterparts.

However, the goal for KARL is not that it should

out-perform humans but that it should match human

performance, both good and bad. A model that accurately

I* represents both the efficient and inefficient elements of

human performance would be of great value in the design of

decision aids and/or development of effective training

cj ,gz
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programs. In the next chapter the proposed rule-based model

of human problem solving is applied to a process control

simulation.
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CHAPTER V

PERFORMANCE OF KARL

IN A PROCESS CONTROL TASK

The first test of the proposed model, KARL, was

performed in a process control simulation that was developed

for studying human problem solving. This simulation

environment was chosen because of the availability of

extensive data on human problem solving in this simulator.

ELANT.

PLANT (Production Levels And Network Troubleshooting)

is an abstract computer-based simulation of a continuous,

fluid processing plant through which generic raw material is

transformed into generic finished product. The PLANT

operator's task is to supervise the flow of fluid through a

series of tanks interconnected by valves so as to produce an

unspecified product. The operator's goal is to maximize

production given the "physical" limitations of the system

(such as tank or valve capacity or reliability of system

components).

, %.
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Tanks are organized in columns, where tanks in the

left-most column receive input and tanks in the right-most

column produce output. In general, the flow through the

system is from left to right, and any pair of connected

tanks behaves as a second order system.

Tanks are connected by valves, which may be opened

and closed by the operator via appropriate commands.

Furthermore, the operator controls the input to and output

from PLANT by specifying the number of units of fluid per

tank to be pumped in and pumped out, respectively. A sample

network of the PLANT simulation is depicted in Figure 3.

:Li

C++ F59 151

Figure 3. Example PLANT Network
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Since pumps, valves, and tanks, may fail in different

ways, several diagnostic commands are available to the

operator. Furthermore, there are commands for failure

compensation, such as sending a "repair crew3 to the site of

the failure. ( See APPENDIX A for a list of all commands.)

Safeguards incorporated into the system inhibit loss

of control of the system and prevent system damage. For

example, valves are closed automatically, i.e., tripped,

when the amount of fluid flowing through them is too great.

The operator can recover from trips by reducing input and

output and diligently reopening valves until flow is

stabilized. For more detailed information about PLANT see

Fath (1982) and Morris (1983).

A umzsna th& Bndnl Pprfnanna

The ultimate goal for any model of human behavior is

to duplicate the behavior of the human being modeled (Hunt,

1981). The degree of success obtained is highly dependent

upon the measures used to evaluate the performance of the

model. One might develop a model for solving problems such

that it matches human performance with PLANT very well in

terms of overall production obtained. However, the model

might use strategies completely different from those of

humans. Since the goal of the proposed model is to match

human behavior in terms of problem solving approaches,

,.:
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rather than to match only the final problem results,

emphasis was placed on the sequence of actions taken by the

model in comparison to the subjects.

A large quantity of data was available from

experiments performed by Morris (1983). A sample of this

data was used to develop the rules of the model and to

evaluate the resulting model behavior and performance.

Specifically, data for all 32 subjects in sessions 8 through

11 of the experiment of Morris (1983) was utilized for the

comparison reported here.

QDm~ariotn Kith Subjects

An overall evaluation of the model was performed by

comparing the total production achieved by the subjects and

by the model. Furthermore the number of system trips and

number of alarms, which may be seen as measures of

stability, were compared. In order to compare the actions

of the model and those of the subjects, the model was used

to select the action it would have made in each situation

that the human subject viewed. Then the action actually

taken by the subject was read from a data file. The actions

for the model and the subjects were then recorded in a data

file for later analysis. Finally, the problem was updated

with the action selected by the subject. This process was

repeated until the problem was solved.

1%
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The subject's choice was used for updating since,

otherwise, any deviation of the command sequences of model

and subjects would have resulted in divergent system states

and inherently different command sequences. To avoid this

problem the model always selected actions according to the

3 - situation viewed by the subject. This was assured by always

implementing the subject's choice.

Before discussing the performance of the model,

information about the experiment performed by Morris (1983)

as far as necessary for understanding the model application

is briefly outlined. Morris was interested in the effects

of level of knowledge upon human problem solving in a

process control task. Her experiment involved 32 subjects,

who were divided into four groups each of which received a

different set of instructions.

Group A received minimal instructions which were

directed at xhat kind of system is it, i.e., information

about the concept of the plant, discussion of the goals of

PLANT operations, operational constraints, possible

malfunctions, and command options available. Group B

received the same set of instructions and, in addition,

information as to WW the system should be controlled in a

certain manner, i.e., principles of the plant in terms of

dynamic interrelationships. Group C received minimal

instructions and a set of procedures, i.e., how the system

A............................-"..-....-.."..'..-"...
I . . . .1
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should be controlled in both general and more specific

forms. Finally, group D received an instruction set

containing principles and procedures, as well as

relationships between principles and procedures. These

relationships were more directly related to the Owhyso of

PLANT operations; here the rationale behind the information

in the procedures was presented in terms of concepts

discussed in the principles.

Overll MAnre

Total Producton

To compare the model with the subjects on total

production the model was allowed to run by itself, without

being updated using the subject's actions. It should be

noted that production was never used by the model to make a

decision. Certainly, the model uses production as an

overall goal as the subjects, but it does not use production

at any instant to drive rules. Table I shows the total

average production for KARL and for all 32 subjects from the

four instructional groups in the four production runs (i.e.

sessions 8 through 11 of Morris' experiment).

%"-.-
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Morris (1983) found that there was no significant

difference in total production achieved among the four

N instructional groups. However, there was wide variability
within groups. It can be seen that the model succeeded very

well in matching the average or typical performance for all

four groups.

Table 1. Total Prducnt.ion
Comparison of Subjects and KARL.

Groups Production runs
Average production:

1 2 3 4

A 147,715.9 135,765.8 164,298.4 133,224.4
B 145,872.8 139,839.4 166,433.3 136,160.6
C 174,725.6 148,066.5 167,032.9 140,749.9
D 161,398.9 146,911.5 171,959.3 146,989.9

Mean 157,428.3 142,645.8 167,430.9 139,281.2

KARL 156,960.0 144,690.0 168,480.0 151,710.0

tLabilityt

.Another performance measure is the overall stability

of the system. This can be indirectly measured by system

trips and alarms. Valves of the system were tripped, i.e.,

were closed automatically by the system's safety system,

when the magnitude of the flow through them was too great.

One way this could occur was when valves were opened between

C. 4 -. ,.*% %-. %.. ...... ... -*. .,, . .
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tanks whose differences in fluid levels were too great,

creating a pressure difference that led to excessive flows.

Thus, large differences in levels were to be avoided.

Warning alarms were given when a tank reached its maximum

capacity or the fluid in it dropped to zero. Thus, a stable

system is characterized by approximately equal fluid levels

in tanks.

Table 2 shows the total average number of system

trips and total average number of alarms for KARL and the 32

subjects in the four groups and in the same four production

runs as noted in the preceding section. Morris found

significant differences in system stability between those

groups who received procedures, i.e. how to work the system

(i.e. Groups C and D), and those who did not (i.e. Groups

A and B). Since the rules in the model were developed

according to those procedures, it is not surprising that the

model matched the instructional groups with procedures

better than the others.

The number of alarms of the model is significantly

lower than the average of all four groups. That is due to a

general rule in the model to reduce input and output to zero

4.' whenever fluid levels exceeded critical values. Subjects,

-_ however, continued to try to produce even when critical
fluid levels were exceeded.

...,......... ..... ..................
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Table 2. Stability_ IBanurea
Comparison of System Trips and Warning
Alarms of Subjects and KARL.

Grotips Production runs
Average Number of System Trips and Alarms:

1 2 3 4
Trips/Alarms Trips/Alarms Trips/Alarms Trips/AlarmE

A 565.7/93.75 507.1/93.00 343.4/12.50 497.6/73.25
B 544.8/40.25 433.0/41.75 318.1/ 9.63 397.5/55.50
C 374.4/ 1.00 353.0/ 9.25 285.9/ 1.75 307.4/18.00
D 321.8/ 1.88 333.4/ 6.25 224.6/ 1.88 261.5/14.75

Mean 451.7/34.22 406.6/37.56 293.0/ 6.44 366.0/40.38

KARL 259.0/ 0.0 308.0/ 0.0 235.0/ 0.0 270.0/11.0

Ar tion-by-Action

As emphasized earlier, an interesting aspect of

evaluating a model is the comparison of how the model and

subjects reached their final state, i.e., comparing the

sequences of actions. In order to study the strategies of

the subjects the model was used to determine what action it

would have chosen in each situation seen by the subject.

Action-by-Action comparisons were performed for all 32

subjects in the four previously examined production runs.
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L&Ay"1 2f Agreeent

Since there are 16 different commands available to

operate the system* and an almost infinite number of

arguments for the commands it seemed reasonable to evaluate

KARL in terms of several possible levels of agreement

between each subject and model.

The highest level of agreement occurred when subject

and model employed the same command plus same argument

(Level I). It cannot expected, however, to achieve a high

percentage of matching in this category. For example, for

the Opw command, i.e., pump in or pump out a certain amount

of fluid (see APPENDIX A), there are infinite possibilities

for the specified amount, although only a limited number is

reasonable. Thus, the model was restricted to eight values,

i.e., 0, 50, 100, 150, 200, 210, 220, and 230 units.

However, subjects were free to choose any amount of input or

output.

The next highest level of agreement occurred when

subject and model employed the same command, but not

necessarily the same argument (Level II). On this level a

reasonable percentage of matching can be achieved. However,

from the 16 commands available, there are some commands

APPENDIX A contains a listing of all possible
commands available to the PLANT operator.

.%
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. which were never used by the model, e.g. the "ct" command.

i.e., "close all valves from any tank". Since an overall

policy for the system was "keep all valves open", the model

contained no rule to close all valves from one tank. Only

on very rare occasions would the model close individual

- . valves. i.e., use the "cv" command.

The next level of agreement occurred when subject and

* model employed the same type of command (Level III).* There

are six different types of commands. and agreement at this

- , level can be interpreted as implying that subjects used the

same or similar rules to choose their actions as the model.

The final level of agreement included Levels I, II,

and III and, further, those agreements which happened over

two iterations (Level IV). For example, if the subject

utilized a "po" command and then an "ot" command, and the

model utilized the same commands but in opposite order,

these agreements were included in this category.

Table 3 shows how the model compared to all subjects

in four production runs. On Level I an average agreement

17.67 % was found, on Level II 34.83 %, on Level III 52.85 %

and on Level IV 60.46 %. No significant differences were

found between the four groups on any level of agreement.

* APPENDIX B contains a listing of the different
types of commands.9.

.1"
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This is somewhat surprising since the model's actions were

chosen according to proceduralized rules. and it was

expected that the groups who received procedures (i.e.,

Groups C and D) would have been matched better than those

who did not (i.e, Groups A and B).

Table 3. Lg- 2L Agof mnt
of Subjects and KARL.

v Groups Levels of Agreement

I II III IV

A 16.70 33.18 53.90 61.37
min 1.00 5.80 45.20 52.60max 35.10 57-10 65.60 79.40

B 14.93 32.95 50.91 59.12
min 5.60 17.00 39.40 44.10
max 26.20 59.30 70.90 86.40

C 21.54 36.80 54.40 61.09
min 9.20 18.00 40.00 48.10
max 32.70 57.70 64.90 73.20

D 17.50 36.39 52.21 60.26
min 5.00 14.20 35.60 40.00
max 32.20 57.50 65.60 83.50

Mean 17.67 34.83 52.85 60.46

Within groups there was wide variability among

- subje:-s and it was found that the model agreed more with

subjects who had fewer trips and alarms. i.e., a more stable

system, than those subjects who had many trips and alarms.

Table 4 shows the degree of agreement of eight subjects. a

'%..N
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.4,

- good and a bad subject of each group, with the model.

System trips and alarms of these subjects are depicted in

the left-most column and agreements in percent in the other
4.%,

columns. Morris (1983) found significant differences in

system stability between procedures and no-procedures

" groups. However, since both groups included good and bad
subjects, the difference in agreements were not sufficient

to produce siqnificant differences between groups.

Table 4. Levels of ag remnt, of Subjects and KARL
in Comparison to System Stability.

Groups Levels of Agreement

-, ___________ IIIII IV
Trips/

Alarms*
4 A

g: 144/0 21.03 39.82 47.43 62.86
b:1038/478 1.00 6.20 52.00 57.40

B
g: 174/0 22.82 59.28 70.92 86.35
b: 614/0 6.40 17.20 44.20 47.00

C
g: 156/0 21.03 47.20 59.28 69.57
b: 577/0 19.09 34.20 52.13 59.96

.". D
g: 153/10 19.91 57.49 65.55 83.45
b: 402/0 10.96 26.17 50.34 54.13

% .

* The numbers in this column correspond to the number
of system trips and number of alarms of a good (g) and a bad
(b) subject in each group.

%%%
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There are some rules within KARL which are not used

by some subjects. and in those cases the model failed to

match the subject's choice. However, the goal was to avoid

making every action a special case with its own rule.

* Although eventual plans for KARL involve changing the

production rules of the model in order to match poorer

subjects or subjects with limited knowledge. it is clear

from the above results that it is not possible to develop a

single set of rules which agrees with subjects' choices as a

group; there is simply too much within group variation.

Czaaea .f mimtce

Since an overall match of 60.5 % was found, it was of

interest to analyze what kind of mismatches occurred. To

categorize these mismatches, a matrix of percentages of

commands given by subjects vs. those given by KARL was

constructed. The matrix containing the Level III

comparisons, i.e., same type of command, is depicted in

Table 5. The sum of the diagonal entries (i.e., 48.5 %)

represents the percentage of agreement on Level III.

Further, comparisons involving unimportant

differences were included in this category. These are uses

of command-type "a", i.e., "check flow from any tank", and

of command-type "s", i.e., "skip iteration". Very often,

the situation did not justify the use of the "a" command.

I : *..- *(• ., % .. . . . ....- -' " - ' -"- "- " "". " "~. " " "' " -
i.
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4
which should be used as a diagnostic action when

discrepancies from expected fluid levels call for it.

Disagreements in the use of these commands, i.e., KARL used

"a" or s" commands and subjects used the opposite in

unjustified situations, were included in Level III

comparisons. Including this type of unimportant

differences, an agreement of 52.85 % was found (see also

Table 3).

Table 5. Distribution of Commands
Used by Subjects and KARL.

1 2 3 4 5 6
p s 0 c a rSubiects

1 p 4.62 1.01 3.58 0.12 2.58 0.05
2 s 3.00 1.14 2.83 0.19 3.75 0.07
3 o 14.12 0.89 34.07 0.02 0.46 0.13
4 c 0.76 0.18 1.74 0.02 0.31 0.02
5 a 7.56 2.03 4.53 0.31 8.46 0.18
6 r 0.34 0.14 0.47 0.01 0.13 0.10

Table 6. Pemmatn bf a fmmandsUsed by Subjects Given a Specific
Command by KARL.

KARL
1 2 3 4 5 6ilp s o c a r

Subj ect s
1 p 15.20 18.72 7.59 17.50 16.45 9.73
2 s 9.88 21.24 5.99 28.06 23.89 13.42
3 o 46.43 16.47 72.16 2.78 2.93 23.42
4 c 2.51 3.38 3.68 3.33 1.97 3.02
5 a 24.86 37.68 9.60 47.22 53.95 32.55
6 r 1.12 2.52 0.99 1.11 0.82 18.12

% % % 6 %,
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While Table 5 shows the percent usage of each of the

six types of command, Table 6 shows the percentages of the

subject's choice given a particular type of command by KARL.

Table 6 is simply a transformation of Table 5. In Table 5

the entry at the intersection of subject's "o" command and

KARL's "p" command reads: in 14.12 % of All action choices

the subjects used the "o" command, when KARL used the "p"

command. In Table 6 the corresponding entry has been
computed by dividing the entry of Table 5 by the sum of the

column. i.e., in this example. the percent usage of "p"

commands by KARL. Thus. the corresponding entry in Table 6

reads: given KARL's "p" command, subjects used the "o"

command 46.43 % of the time.
m

The percentage of disagreements for all comparisons

was 39.5 %. The most important causes of mismatches are

summarized below:

1. Given the "p command by KARL, 46.4 % of the subjects'

choices were the "o" command. This disparity accounts

for an overall 35.7 % (i.e., 14.1 % of all comparisons)*

of the mismatches. The highest priority of the model is

to adjust input and output appropriately before

utilizing any other command. While the model running by

itself did not use the "p" command very often, most

% .~* The information in parentheses gives the reader the
:_ possibility to refer to Table 5.

-. "e.P, , P-0 P r" 
- .-
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subjects did not adjust input and output as the model

would do. Thus. upon viewing the state of PLANT after

the subject's command had been implemented, the model

continued to propose the "p" command, which is the

reason for this mismatch.

2. Similarly, given the "p" command by KARL, 24.9 % of

subjects' choices were the "a" command, i.e., "check

flows". The subjects preferred to check flows rather

than adjust input/output. This difference in priorities

contributed 19.2 % (i.e., 7.6 % of all comparisons) to

the overall mismatch.

3. Finally, given the model's "p" command, a further 9.9 %

of the subjects' choices were the "s" command. This

contributed 7.8 % (i.e., 3.0 % of all comparisons) to

the overall mismatch.

It can be seen from 1. through 3. that the

highest percentage of mismatches (i.e., 62.7 %) resulted

from subjects' choices of input and output. Even

subjects who received procedures which prescribed to

them how to adiust input/output in certain situations,

did not fully utilize this information.

mA

4.mI
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4. Subjects utilized the "a" command 9.6 % of the time

while the model gave the "o" command, i.e., "open

valves". The second highest priority rule for the model

was "to keep all valves open" before checking any flow.

This contributed 11.4 % (i.e., 4.5 % of all comparisons)

to the overall mismatch.

5. Similarly, subjects gave the "s" command 5.9 % of the

time while the model. due to the priority noted in 4.,

gave the "o" command. This disagreement contributed 7.1

% (i.e. 2.8 % of all comparisons) to the overall

mismatch.

6. Given the model's wo" command, 7.6 % of the time

subjects used the "p" command. It was found that the

subjects often acted conservatively, i.e., they

decreased input/output although the system's state did

*not call for it. This contributed 9.1 % (i.e., 3.6 % of

all comparisons) to the overall mismatch.

7. Finally, given the model's wow command, 3.7 % of the

time the subjects used the "c" command. This is an

indication that subjects did, in general, much more fine

tuning than the model. The model was instructed "to

keep all valves open" rather than to close valves in

order to adjust the fluid levels. This contributed 4.3

% (i.e., 1.7 % of all comparisons) to the overall

-  
dr d d Id
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*mismatch.

The mismatches described above account for 94.6 %

(i.e., 37.4 % of all comparisons) disagreements. All other

types of mismatches contributed less than 1%.

s ummaryt

The preceding sections described the results of

various comparisons of subjects' behavior and that of the

model. The overall production comparison yielded a very

good match of the average production for all subjects. This

agrees with the findings of Morris (1983) in that the four

groups did not differ in average production. However,
*

system stability differed for the four groups depending on

instructions received, and since the model incorporated in

its rules the procedures which some subjects received, it

agreed with those subjects better in terms of system trips

and alarms.

The action-by-action comparisons yielded no

significant differences between the four groups, which was

due to wide variability among subjects' action sequences

within groups. A higher level of agreement could be

achieved by adjusting the model to individual subjects. both

in terms of rules and priorities.

- *, :....'-.-, .. "- *- . - ".
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Table 7 shows the percentage of all types of commands

of the four groups and of the model when it ran by itself.

It can be seen that the model agrees better with procedure

groups (i.e., groups C and D) in terms of "s", "o" and "c"

commands than with no-procedure groups (i.e., groups A and

B). However, performing action-by-action comparisons the

model had to adjust to the situation viewed by the subjects,

and so the differences could not appear.

The "a" command was used by the model significantly

less than by the subjects because the model used this com-

mand more diagnostically than the subjects who seemed to use

it very often just to spend time (see also the discussion of

unimportant differences in the last section). This may have

been due to the fact that the model contains a first order

approximation of the second order PLANT dynamics and was

able to predict expected fluid levels. KARL checks the flow

if the fluid level in the tanks deviates from the expected

level, i.e., the predicted level. Thus. failure detection

is based on violation of expectations.

% % % %
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Table 7. nm~alx na of Ue nf ommands
of Subjects and KARL.

Groups: A B C D KARL

command

a pa 14.50 8.91 12.6 11.89 24.95
"so 6.02 9.83 15.76 12.42 13.31
on 54.46 52.14 46.79 44.78 42.06
"CU 3.96 4.50 1.69 1.81 1.56
Ma' 19.82 23.36 21.94 27.66 16.15
Urn 1.19 1.11 1.17 1.27 0.97

It was found that some rules within KARL followed the

-A PLANT instructions too strictly to match several subjects.

For example, the model contains a rule which proposes that

if the system is stable, i.e., all valves are opened and the

height differences are within a specified range, then output

and input should be some high, optimal value. However, some

subjects appear to be conservative and do not like to bring

the system to its limits. In these cases the model

continues to give the action command for input and output,

but the subject never goes that far.

Similarly, if the system is destabilized, the model

wants to reduce input and output in order to restore a
stable system. Subjects, however, since their main goal is

to achieve high production at all costs, continue to produce

* even if it would be better to restore system stability.

This behavior was observed very often and resulted in

., - . - -. - - . . - ..' , . . ,.., .% ,. O
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degradation of the match- It might be reasonable to inhibit

the model's excessive use of the "p" command by allowing it

just one "p" command per N iterations or one "p" per N

operator actions. This would possibly improve the match.

valesFurthermore, the model's overall strategy, "keep all

valves open", was not followed by several subjects, even

when they were instructed to do so. Subjects opened and

closed individual valves very frequently, a behavior which

was not implemented in the model at all. Thus, subjects did

much more fine tuning than the model.

These results lead to several interesting behavioral

interpretations. First, not all subjects appear to know, or

at least utilize, all of the information provided in their

instructions, despite the fact that a written examination,

administered by Morris (1983), indicated subjects had

learned their instructions. Second, some subjects appear to

be conservative in terms of not operating the system as

close to the limits of production as is possible, and tune

the process much more than necessary. These results suggest

some interesting avenues for training and/or aiding of

operators.

,r/, Z ,.,:,," ........ • .... -........ .. ..- ...-.........-- S.. .--..... .. ..-. ,.- . "..-.[
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CHAPTER VI

SUMMARY AND CONCLUSIONS

This thesis has discussed an approach to modeling

human problem solving in dynamic environmen't A variety of

models of human problem solving were reviewed, and it was

concluded that there is a need for a general model of human

problem solving in dynamic environments. Several approaches

* to representing human knowledge in a form suitable for

incorporation in a problem solving computer program were

discussed. This leads to a discussion of a three-level

model of human problem solving.

This model was realized in a particular rule-based

computer program. This program was discussed in detail with

emphasis on the general structure of the model which enables

adjustment (via the rule base) to different problem solving

tasks. This model was applied to a process simulation task

and the results were presented and discussed. The model

matched the subjects performing this process control task

quite well in terms of overall performance, and reasonably

well in terms of the sequence of actions utilized by

subjects, i.e., how the subjects reached their goal.

., ~ i
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There are several limitations in the model which will

be the subject of further research. The rules in the model

were developed according to procedures which were found

appropriate to operate the system. Thus, for almost every

situation the model utilized a script which triggered an

appropriate sequence of actions. If there was no script

available the model chose a tuning action which might or

might not be appropriate. Although "planning" was

incorporated in the framework of the model, the model did

not actually plan what action to give and when to give it.

Thus, the planning aspect of the model needs considerable

elaboration.

An interesting conclusion emerged from the

action-by-action comparisons. It was expected that subjects

who received procedures should agree with the model better

than subjects who did not. However, large individual

differences resulted in no statistically significant

difference being found. It can be concluded that many

subjects who received inherently rule-based training, i.e.,

procedures. did not follow these instructions. In the

written test, however, these subjects answered questions,

which asked for the appropriate procedure to use in certain

situations, according to the training documentation they

received, i.e., they learned their instructions. Thus, the

action-by-action comparison implies that "experts" do not

. . -'. e. V - - -
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always tell what they actually do. It is not asserted that

subjects after a number of training sessions are experts.

This notion is used here to show that the subjects knew what

to do. as a written examination indicated, but did not

always do it. This may explain why there were no

differences found in matching subjects of different groups.

Changing the knowledge base of the model both in

terms of rules and priorities should take into account the

fact that procedures provided as training documentation do

not necessarily describe subjects' behavior. Another point

which will be considered in view of the above observations

is the model's potential for making errors in the same way

and for the same reasons as humans.

In summary, the model is throughout fairly
J.

proceduralized, and further research will involve making the

model more general in terms of planning and reasoning about

actions. Training procedures are not necessarily followed

by subjects, so the model should be allowed to deviate from

learned procedures. Another idea is to implement the model

as an online method for testing the subjects' use of

instructions. Finally, the model's usefulness will also be

tested in different problem environments.

p
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APPENDIX A

PLANT COMMAND OPTIONS *

As the operator, you have the following commands available:

ovIJ Open the valve between tanks I and J

cvI,J Close the valve between tanks I and J

ocK Open one valve per tank in column K

ccK Close one valve per tank in column K

otI Open all valves from tank I

ctI Close all valves from tank I

piN Set input per input tank to N units

poN Set output per output tank to N units

skN Skip N iterations; the system will be
updated N times before the display is
updated

flI,J Check the flow from tank I to tank J

afI Check all flows from tank I

rvI,J Repair the valve between tanks I and J

rpI Repair the pump associated with tank I

rtI Repair the rupture of tank I

rs Repair the PLANT safety system

st System trip; close all valves and stop
all input and output

* Taken from Morris (1983)

. ' " . . . . ." . . .- . . - ... . . ..



: . , L. - -. 
,  

.- - U . -. . ... w .. J .. . . L . - -

61

* -APPENDIX B
.TYPES

- -. PLANT COMMAND TYPES

p" Set input or output

"s" Skip iteration(s)

wo Open valve(s)

"c" Close valve(s)

"a" Check flow(s)

"r" Repair valve, pump or tank

% 

%

I.
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